# -------------------------------------------- # CITATION file created with {cffr} R package # See also: https://docs.ropensci.org/cffr/ # -------------------------------------------- cff-version: 1.2.0 message: 'To cite package "sGMRFmix" in publications use:' type: software license: MIT title: 'sGMRFmix: Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection' version: 0.3.0 doi: 10.32614/CRAN.package.sGMRFmix abstract: An implementation of sparse Gaussian Markov random field mixtures presented by Ide et al. (2016) . It provides a novel anomaly detection method for multivariate noisy sensor data. It can automatically handle multiple operational modes. And it can also compute variable-wise anomaly scores. authors: - family-names: Makiyama given-names: Koji email: hoxo.smile@gmail.com repository: https://hoxo-m.r-universe.dev commit: 4bf36707cf3e0a96c752f85c1ef2d98a632d9224 date-released: '2018-04-16' contact: - family-names: Makiyama given-names: Koji email: hoxo.smile@gmail.com